Borel’s conjecture and meager-additive sets

نویسندگان

چکیده

We prove that it is relatively consistent with $\mathrm{ZFC}$ every strong measure zero subset of the real line meager-additive while there are uncountable sets (i.e., Borel's conjecture fails). This answers a long-standing question due to Bartoszynski and Judah.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Every null - additive set is meager - additive †

§1. The basic definitions and the main theorem. 1. Definition. (1) We define addition on 2 as addition modulo 2 on each component, i.e., if x, y, z ∈ 2 and x+ y = z then for every n we have z(n) = x(n) + y(n) (mod 2). (2) For A,B ⊆ 2 and x ∈ 2 we set x + A = {x + y : y ∈ A}, and we define A + B similarly. (3) We denote the Lebesgue measure on 2 with μ. We say that X ⊆ 2 is null-additive if for ...

متن کامل

Universally Meager Sets

We study category counterparts of the notion of a universal measure zero set of reals. We say that a set A ⊆ R is universally meager if every Borel isomorphic image of A is meager in R. We give various equivalent definitions emphasizing analogies with the universally null sets of reals. In particular, two problems emerging from an earlier work of Grzegorek are

متن کامل

On Perfectly Meager Sets

We show that it is consistent that the product of perfectly meager sets is perfectly meager.

متن کامل

Strongly meager sets of size continuum

We will construct several models where there are no strongly meager sets of size 2 ℵ 0 .

متن کامل

Strongly Meager Sets Are Not an Ideal

A set X ⊆ R is strongly meager if for every measure zero set H, X + H = R. Let SM denote the collection of strongly meager sets. We show that assuming CH, SM is not an ideal.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2021

ISSN: ['2330-1511']

DOI: https://doi.org/10.1090/proc/15536